61

Через середину К медианы BM треугольника ABC и вершину А проведена…

zloбный 19 мая 2023

Через середину К медианы BM треугольника ABC и вершину А проведена прямая, пересекающая сторону ВС в точке P. Найдите отношение площади треугольника ABCк площади четырехугольника KPCM

категория: геометрия

46

*Т. К. ВМ — медиана треугольника АВС, то S (ABM)=S (MBC)=S (АВС) /2Т. К. АК — медиана треугольника АВМ, то S (ABK)=S (AKM)=S (ABM) /2=S (MBC) /2=S (АВС) /4 Проведем МД так, что МД || КР, тогда КР — средняя линия в треуг-ке ВДМ, а МД — средняя линия в треуг-ке АРС, значит ВР=РД=ДС, т.е. вС=3ВР. По условию ВК=КМ, т.е. вМ=2ВК. ТогдаS (KBP)=1/2*ВК*ВР*sinКВРS (МВС)=1/2*ВМ*ВС*sinКВР=1/2*2ВК*3ВР*sinКВР=3*ВК*ВР*sinКВРТогда S (KBP) /S (МВС)=1/ 6, а значит*S (KPСМ) /S (МВС)=5/6. Сравниваем строчки, помеченные*и получаем S (ABС): S (KPСМ)=1:6

пользователи выбрали этот ответ лучшим
Знаете другой ответ?

Есть интересный вопрос? Задайте его нашему сообществу, у нас наверняка найдется ответ!
Делитесь опытом и знаниями, зарабатывайте награды и репутацию, заводите новых интересных друзей!
Задавайте интересные вопросы, давайте качественные ответы и зарабатывайте деньги. Подробнее...